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Abstract. We present a novel approach to lhe calculation of shallow impurity states in single- 
and multiquantum-well systems. The Schrodinger equation is directly integrated numerically 
using an iteraiive technique. Thus. by avoiding a variational onsatz for the wave function and 
including a proper treatment of the coupling between the wells. the whole range from low to 
high magnetic fields as well as from the two-dimensional to the three-dimensional limit is treated 
on the same level. For the case of a single quantum well we discuss the dependence of the 
binding energies on the magnetic field as well as on the position of the impurity. For the case 
of a multi-quantum-well system we analyse the influence of the barrier width on the energies 
and the localization of the wave functions and we show that for barriers thicker than about 
I O  nm a single-well analysis is sufficienr. A comparison with experimental rewlfs shows good 
agreement. 

1. Introduction 

The study of shallow impurities in the presence of a magnetic field is of considerable 
interest experimentally because of their effect on the properties of device materials. For 
example, we note that resonant tunnelling of electrons through bound impurity states has 
recently been reported [I]. This follows earlier work [2] in which such impurities were 
shown to give rise to specific features in the current-voltage characteristics of double- 
barrier resonant structures via donor-assisted tunnelling. Such structures also provide an 
interesting theoretical subject for the investigation of the interplay between different length 
and energy scales. Characteristic length scales are given by the well and barrier widths, by 
the Bohr radius of the impurity, and by the cyclotron radius. Corresponding energy scales 
are given by the barrier height, the miniband width and splitting, the Rydberg energy of the 
impurity, and the cyclotron energy. 

The problem has been studied extensively mainly using different variational approaches 
[3-71 as summarized, for example, for bulk materials in [8]. A variational approach is 
particularly useful if the characteristic lengths and energy scales are well separated as there 
is then a clear physical motivation for the selection of a trial wave function. In further 
work [9], an alternative matrix diagonalization procedure has been developed in order to 
calculate accurately the energies of all states and, in particular, those of the excited states. 
For low magnetic fields, hydrogen-like states will be slightly modified by the field, while 
for high fields Landau states will be slightly modified by the impurity. Also, if the well is 
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thin compared to the Bohr radius, two-dimensional hydrogen-like states will be a good basis 
set, while in the opposite limit three-dimensional states should be taken. In a multi-quantum 
well system, the ratio of the binding energy to the miniband width strongly influences the 
localization of the states. If this ratio is large, the impurity states will be mainly localized 
inside one well; otherwise, they will be delocalized over several wells. Consequently, either 
localized or delocalized trial wave functions should be used. 

The physically more interesting regime, however, is the case where two or more scales 
are of the same order of magnitude. Then, within a variational technique either a large 
number of variational parameters or some interpolation scheme such as two-point Pad6 
approximations [IO] have to be used. A neccessary condition for such an interpolation is 
the possibility to trace back each single state towards the two limiting cases. Obviously, 
this is not always possible. The absence of a one-to-one correspondence between low- and 
high-field states can lead to so-called metastable states [ I  1-13] which cannot be obtained 
starting from the low-field limit. 

The drawbacks of a variational approach can be avoided by a direct numerical solution 
of the time-independent Schrodinger equation. The numerical error resulting from the 
discretization of the differential equation can easily be controlled by using different sizes 
for the steps. Without a change in the basis set, the full parameter range can be investigated. 
In contrast to a variational or perturbational approach, the case of largely differing relevant 
scales would provide difficulties. Fw the present case, however, this does not happen. At 
low fields, the magnetic length scale is much larger than the Bohr radius, but this length is 
irrelevant for the wave functions. In the high-field limit the spatial extension of the states 
is determined by the cyclotron radius only while the Bohr radius is imelevant. Thus. even 
if the problem is characterized by two different length scales, the solution has only one 
characteristic length. 

The aim is to describe this novel approach to the calculation of the energies of impurity 
states in single- and multi-quantum-well systems. The paper is organised as follows. In 
section 2 the basic ideas of the technique for the solution, the theoretical model, and the 
details of the numerical method are described. In the following sections 3 and 4, we present 
our results for the single-quantum well (SQW) and multi-quantum-well (MQW) systems, 
respectively, comparing our results where possible with experimental and other theoretical 
data. Finally, in section 5, some conclusions are drawn. 

2. Theoretical model and numerical method 

The numerical method used for the solution of the timeindependent Schrodinger equation is 
based on a relaxation method for the solution of boundary-value problems [14]. Physically 
it can be motivated by a continuation of the time-dependent Schrodinger equation on the 
imaginary time axis. With T = it we have 

where H denotes the Hamiltonian and 
of eigenfunctions V?,, satisfying the time-independent Schrodinger equation 

the wave function. In terms of the complete set 

HV?, = En*" (2) 
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the general solution of equation (1) is given by 

with c, = (Y,lY(O)) being the expansion coefficient of the initial state Q(0). Assuming, 
without loss of generality En z 0 for all energies, all terms in equation (3) decay with 
increasing r; the ground state "0, however, will have the slowest decay rate, given by 
EO fh. Thus, except for a normalization constant, the solution of equation (1) approaches 
the ground state with increasing r ,  unless the initial condition is orthogonal with respect 
to this state. The excited states can be obtained successively by choosing an initial state 
orthogonal with respect to the already known lower states. Obviously, this technique works 
only in the case of a discrete spectrum. 

After having discussed the general formulation of our procedure, let us now turn to 
the specific Hamiltonian for the shallow impurity in a multi-quantum-well structure. In the 
symmetric gauge with the vector potential A = for a magnetic field B perpendicular 
to the wells, the Hamiltonian is given in cylindrical coordinates (p.  4, z)  according to 

h2 ehB a eZB2 
2m* 1; :p ( :p) d2 :iz iz;) 2m*ia# 8m +,P H=-- __ p- f-- 

Here, V,(z) is the quantum-well potential, z, is the z-coordinate of the impurity, and a 
single isotropic effective mass m' has been assumed for the well and for the barrier regions. 
Due to the cylindrical symmetry of the problem, the z-component of the angular momentum 
commutes with the Hamiltonian and the eigenfunctions are given by 

Y ( P ,  9,  z) = W, z)eimq (5) 

and we end up with a two-dimensional Schrodinger equation for @(p,  z). Thecorresponding 
Hamiltonian is obtained from equation (4) by substituting (im) for a f a b .  

To obtain a solution of the problem, the boundary conditions for the wave Functions 
have to be specified. Since we are interested in bound states, the wave function must 
vanish at infinity (that is for p + 00 and z + &ea). Furthermore, the solution has to be 
finite everywhere and the first derivative has to be continuous except at the position of the 
impurity. This leads us to the boundary conditions for p = 0: (i) For m # 0, the wave 
function must vanish at p = 0 in order to be unique when performing the limit p + 0 
at different angles 4. (ii) For m = 0 and z # ZI the boundary condition is = 0 
in order to have a continous derivative. (iii) The only remaining condition for m = 0 and 
z = zI is obtained by transforming the Schrodinger equation into spherical coordinates and 
integrating over a small sphere with radius R around the impurity. When performing the 
limit R + 0 this results in 

with r = 
The parabolic differential equation (1) is now solved numerically by using an explicit 

finite difference scheme with step sizes Ap.  Az, and A r .  After each time step the 

and 6 = tg-'(p/z). 



760 T Kuhn er a1 

wave function @ ( p ,  z)  is normalized to a maximum value of unity. The energy E ( r )  = 
(WlHlQ)/(WlW) is calculated and the result is accepted if E(T - A s )  - E ( r )  c A E h n  
is reached, where, typically, AEhn = 5 x meV. The procedure has been tested by 
examining the three-dimensional as well as the two-dimensional limit where, in the absence 
of a magnetic field, the exact energies are known. In these cases, the error in the ground 
state energy is of the order of 1%. After the calculation of the ground state, a new initial 
state orthogonal with respect to the ground state is taken and the procedure is repeated. Due 
to numerical uncertainties, the solution does not remain exactly orthogonal and, therefore, 
after typically 100 time steps an orthogonalization procedure is performed. In the same 
way, the excited states E,, are calculated successively up to the desired number n,, by 
orthogonalization with respect to all lower-lying states. 

From equation (3) it is clear that the total time r needed for a convergence of the nth 
eigenstate is of the order of several f t(E,+~ - E J ' .  On the other hand, the convergence of 
an explicit finite difference scheme poses an upper limit for the time step A r  of the order 
of A r  .c m*(Az* + A p 2 ) P .  Thus, when increasing the spatial resolution by a factor f 
the total number of time steps required for convergence increases quadratically in j and 
consequently the computer time increases by the fourth power in j .  This can be avoided by 
using a multigrid technique 1141. We start with relatively large values of Ap, Az, and A r  
and solve the equation until the energy converges. The spatial step sizes are now divided 
by two and the time step is divided by four. Again the equation is solved until convergence 
is reached. This procedure is repeated up to the desired spatial accuracy. We typically start 
on a lattice with about 12  x 16 points and end up on a lattice with 192 x 256 points. 

The parameters chosen in the numerical calculations are the same as those in 191 and 
1131 corresponding to experiments described in [15], except for the barrier thickness for 
which different values have been taken. In the next section, we present results for an sQw 
system where the impurity is placed either in the well or in the barrier. Due to the long 
range of the Coulomb potential, bound states are observed even for quite large distances 
of the impurity from the well, In section 4 we present results for an MQW system. We 
demonstrate that for the barrier width studied in  [9], [I31 and [15] no coupling between 
the wells is detectable and we obtain a series of eigenstates localized in the well where 
the impurity is located, a series of states localized in the neighbouring wells and a series 
localized in the next-nearest neighbouring wells. When reducing the barrier width these 
states couple and the full multi-quantum well problem has to be solved. 

3. Results for a single-quantum-well system 

Calculations have been performed for the case of a 15 nm GaAs quantum well surrounded 
by Gal-,AI,As barriers with x = 0.33 up to a magnetic field of 8 T. For each magnetic 
quantum number m = 0, I ,  2,3,  the four lowest states have been calculated. The energies of 
the states with negative quantum number m are obtained by simply subtracting the Zeeman 
energy according to 

efiB 
m* 

E-, = E, - -m. (7) 

The relaxation to an eigenstate is illustrated in figure I for the case of B = 4 T, m = 1 
and an impurity in the centre of the well, where the wave function @ ( p , z )  is plotted at 
four different values of the imaginary time r. Figure I(a) shows the initial state chosen in 
the calculations. At r = 5 fs (figure I(b)) the wave function is already mainly confined 
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in the well but the impurity has not yet influenced the radial shape. This fast relaxation 
in the z-direction can be easily understood from equation (3): in order to reproduce a 
wave function that has a large amplitude in the barrier regions we need eigenstates with 
the same behaviour. These eigenstates have high energies of the order of the barrier height 
(253 meV) and, therefore, their contribution decays rapidly. The subsequent build-up of 
the localization in the radial direction is governed by the energy difference between the 
bound impurity states and the free states (of the order of 10 meV) and occurs on a slower 
time scale. At r = 70 fs (figure l(c)) this build-up is clearly visible and at r = 500 fs 
(figure I(d)) the calculation has converged towards the lowest eigenstate. 

Figure 1. Wave function for the m e  of B = 4 T. m = 1 and an impurity in the centre of the 
well at four different values of the imaginary time r .  (a) r = 0. (b) r = 5 fs, (c) I = 70 is, (d) 
r = 500 fS. 

The energies for the case of an impurity placed in the centre of the well are shown in 
figure 2. With increasing magnetic field we observe the formation of Landau-like states 
where each Landau level N with N = 0, 1,2,, , , has contributions with m < N, as is well 
known from the theory of two-dimensional systems in a magnetic field [IO]. This grouping 
for a particular N is clearly shown in figure 2. The degeneracy of all these contributions, 
which is present in the absence of an impurity, is removed by the Coulomb term. The 
ground state remains well separated from all other states. 
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Magnetic field (T) 
Figure 2. Energy eigenvalues of  a hydrogenic impurity in a 15 nm quantum well as a function 
of the magnetic field. b c h  line refers to a different magnetic quantum number m: -, m 
= 0. . .  .... m = I]. ...... -1; - __, = -2: 
- . . . - . . . , m = -3. Wtlh increasing field. states with m < N group into sets corresponding 

to a Landau quantum number N, 

= 2. -, - , m = 3; - .  .-, m 

The binding energies with respect to the Landau levels at an intermediate magnetic field 
of 4 T are plotted in figure 3. We again note that the ground state has a binding energy 
much larger than all other states. For both cases, m z 0 as well as m < 0, the binding 
energies decrease with increasing Im( due to the reduced overlap of the wave function with 
the impurity potential. For each Landau level index N the binding energy of a state m is 
larger than that of the corresponding state -m since the latter has fewer nodes in the radial 
direction. It is clear from these results that it is not possible to obtain meaningful empirical 
expressions for the binding energies with respect to the corresponding Landau levels as a 
function of m for a given value of B such as those quoted in [16]. 

In an infrared photoconductivity experiment transitions between different impurity levels 
are measured. Therefore in figure 4 the transition energies from the ground state to the 
various excited states are shown for the same case as in figure 2. Two series of experimental 
results [7,15] have also been included, which correspond to a nominal well width of 
15 nm. We find good agreement except for some experimental points just in between 
two Landau levels. We note subsequently that the widths of the wells in the sample used 
in the experiments described in [I51 were found to be 17.8 nm instead of 15 nm 1171, 
which is the figure quoted and used previously in the above calculations [9]. This error is 
sufficient to account for the slight discrepancies between our calculations and experiment. 
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Figure 3. Binding energy of the hydrogenic impurity states with respect to the corresponding 
Landau level in a 15 nm quantum well a1 a magnelic field of 4 T. 
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Magnetic field (T) 
Figure 4. Transition energies betw-n the ground state and excited states. The lines of given 
m m specified as in figure 2. Symbols refer lo experimental results: 0, [15], A, [7]. 
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Also, taking into account different effective masses in the well and the barriers, as well 
as different dielectric constants, might also slighffy modify the results, but these effects 
are small. We note also that, on comparing the above calculations of transition energies 
with those obtained by the matrix diagonalization procedure [9] and the alternative method 
described in [13], very close agreement is obtained. 

Impurity podtion (nm) 
Figure 5. Energy eigenvdues of hydrogenic impurity states in a I5 nm quantum well as function 
of the posirion of the impurity, measured from the cenm of the well. 

An impurity located in the centre of the well produces the largest binding energy. With 
increasing distance from the centre, the binding energy decreases. Due to the long range 
nature of the Coulomb potential, however, bound siates are still possible even if the impurity 
is located in the barrier quite far away from the well. This is shown in figure 5 where for 
the cases of zero magnetic field and a field of 4 T the lowest two states with m = 0 and 
m = 1, respectively, are plotted as a function of the impurity position z,, measured from the 
centre of the well. Note that for z1 > 7.5 nm the impurity is located in the barrier (‘remote 
impurity’). Even at a distance of 60 nm bound states still exist. In the case of an applied 
magnetic field, the energies of states with different values of m corresponding to the same 
Landau level become degenerate as soon as the length scale for a variation of the Coulomb 
potential inside the well becomes larger than the cyclotron radius. 

4. Results for a multi-quantum-well system 

Most experiments are performed on MQW systems rather than on sQw systems. One main 
reason is the increase in sensitivity. Then, however, the fundamental problem arises as  
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to whether the system simply behaves as an ensemble of SQW systems so that the results 
shown in the previous section remain valid, or whether the coupling between the wells has 
to be taken into account. In order to study the role of this coupling, we have performed 
calculations for the case of five quantum wells of 15 nm width, each separated by identical 
barriers with varying thickness. The impurity has been placed in the centre of the central 
well. In this case, due to the symmetry of the problem, the states can be classified according 
to their z-parity as even (Q(p, z )  = Q ( p ,  - 2 ) )  or odd (@(p ,  z )  = - Q ( p ,  - 2 ) )  states. 

......... .... 

......................... _. .... 201 .-I 

Barrier width (nm) 
Figure 6. Lowest six energy eigenvalues of hydrogenic impurity slates in an MQW syslem 
consisting of five 15 nm Qws as a function of the width of the baniers between lhe wells. The 
impurity has been placed in the centre of the central well. The dotted and the long-shoti dashed 
lines refer to states with odd z-parity. all other lines to states with even z-parity. 

The resulting six lowest-energy eigenvalues with m = 0 are plotted in figure 6 as a 
function of the barrier width for two values of the magnetic field. The dotted lines and the 
long-short dashed lines refer to an odd z-parity, all others to an even z-parity. In the limit 
of thick bmiers we observe two different types of behaviour: two states are independent of 
the width, while the energy of the other states increases with increasing width. The reason 
is that the former two states are localized in the central well that contains the impurity, and 
thus they are not influenced by the presence of other wells. (The energies agree with the 
values for zI = 0 as shown in figure 5.) When classified according to the high-field notation 
( N ,  m ,  U), where U denotes the number of nodes in the z-direction, as is done in [9,13], 
these two states refer to (0, 0,O) and (1 ,O .  0). 

The other states are localized in wells other than the central one. Their energies agree 
with the ground state values of figure 5 for ZI = Lw+LB and 21 = 2(LW+LB), respectively, 
where Lw is the well width and LB the barrier width. Odd and even z-parity states are 
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exactly degenerate, which means also that localized states in the left and the right wells 
are possible eigenstates, and the MQW system behaves like uncoupled SQW systems, each 
having a different location of the impurity. For these states it is not important that the 
impurity is located in a quantum well as they behave exactly as if the impurity were in the 
barrier a t  the given distance from the well where the state is localized. Thus we may refer 
to these states as bound states of a ‘remote impurity’. In the high-field notation the even 
states refer to (0, 0,2) and (0, 0,4), while the odd states refer to (0, 0, 1) and (0, 0,3). For 
small barrier widths the degeneracy is removed and the full MQw sytem has to be taken 
into account, This is shown clearly by looking at the localization of the states. 

0.75 

0.50 

0.25 

B = O T  
0.75 

!, 
1 
It 
i ’.. 

(b) c. , ..5 ~ -.___ 
0.00 

0 5 10 15 
Barrier width (nm) 

Figure 7. Relative degree Po of localization in the central well, (see q u a i o n  (8)) of the states 
shown in figure 6. Due 10 a level crossing wilh a higher exciled stale at a barrier width of 
3.5 nm, the dash-dotted line in (a) refers to different stares below and above this value. 

In figure 7 the relative localization in the central well Po, defined according to 

Po = ~ d z ~ p d p l t ( p . r ) l ’  Is” dz s” PdpIq(p ,z ) IZ  (8 )  
-Lw/2 0 -m 0 

is plotted as a function of the barrier width for the same cases as in figure 6. The odd 
z-parity states always have a negligible contribution in the central well. In the absence 
of a magnetic field, for a barrier width above IO nm the two states with barrier-width 
independent energies are indeed perfectly localized in the central well, while the other two 
even z-parity states have no contribution there. With decreasing barrier width, the ground 
state (solid line) and the first excited state (dashed line) remain localized inside and outside 
the central well, respectively, while the other states interact with each other due to their 
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small energy difference, leading to a delocalization over more than one well. From the 
localization behaviour it turns out that in the case B = 0 the dash-dotted line does not refer 
to the same state when varying the barrier width. In fact, at a barrier width of 3.5 nm there 
is a crossing with the next higher state not shown in the figures. Thus, below and above 
this value the curves refer to different states. For very small barrier widths all even z-parity 
states finally become delocalized due to strong tunnelling between the wells. In the case of 
an applied magnetic field the energies are more separated so that the states remain localized 
down to barrier widths below 5 nm. 

0.02 

0.01 
h 
VI 

3 
2 0.00 

= b) 
Figure 8. Radially integrated probability density P ( 2 )  (see equation (9)) of the states with even 
z-parity at zero magnetic field for barrier width (a) 2.5 nm. (b) 5 nm, and (c) 15 nm. The lines 
refer to the four even z-parity energies shown in figure 6.  The vertical dotted lines indicate the 
boundaries between wells and barriers. 

The details of this localization are made evident by looking at the radially integrated 
probability density 

P ( z )  = pdpl$(p,s)I2 dz pdpl$(p.z)IZ. (9) s" 0 Is" -m 7 0 

For zero magnetic field (figure 8) and for a field of 4 T (figure 9) P(z)  is shown for the 
even z-parity states. Parts (a), (b), and (c) refer to barrier widths of 2.5 nm, 5 nm, and 
15 nm, respectively. The boundaries between wells and barriers have been indicated by 
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-80 -40 0 40 80 
(nm) 

Fiyre 9. Same as in figure 8. but for a magnetic field of 4 T. 

dotted lines. For 15 nm barriers, the value of the experiments in [E], we find two states 
localized in the central well, one state localized in the nearest neighbour wells and one 
state localized in the next-nearest neighbour wells. For 5 nm barriers with magnetic field, 
the localization behaviour is still the same, while without magnetic field we now have two 
delocalized states. For 2.5 nm barriers all states except for the ground state have noticeable 
contributions in several wells. 

The localization found here for the case of 15 nm barriers is much stronger than that 
found in previous variational [5] and matrix-diagonalisation [9] calculations. The reason 
is that in the latter calculations [5,9] only the lowest state in the lowest miniband of the 
multi-quantum-well has been included in the basis set of the trial wave function. This state 
is delocalized over the whole structure. The binding energy of the impurity, however, is 
much larger than the minihand width (which is negligible for the present case), so that 
an ansatz with only one of the quasi-degenerate miniband states is not justified for the 
calculation of the localization. On the other hand, for thin barriers the miniband width 
becomes larger and the delocalized basis is a valid approximation. The present approach 
does not use such an ansafz. It converges automatically towards the state with the correct 
localization, independent of the barrier width. 

5. Conclusions 

We have presented a detailed investigation OF hydrogenic impurity states in a multi-quantum- 
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well system under an applied magnetic field. By performing a direct numerical integration 
of an imaginary-time Schrodinger equation we avoid an expansion of the states in terms of 
some finite basis set and thus also problems arising in intermediate regions (e.g. between 
the high-field and the low-field limit or for intermediate barrier widths). For the case of a 
single-quantum well system, we have analysed the dependence of the binding energies on 
the impurity position. Due to the long-range nature of the Coulomb potential, bound states 
exist even for large distances of the impurity from the well. The transition energies between 
the ground state and excited states show good agreement with experimental results. The 
comparisons have been limited to wells of width 15 nm because these widths appear more 
often in the literature but other well widths could have been used. 

For the case of an MQw system, we have investigated the dependence of the binding 
energies and of the localization of the wave functions on the barrier widths. It turned out 
that for barrier widths above about 10 nm the wave functions are completely localized either 
within one well or in the two. equivalent (for symmetry reasons) wells. Thus, the use of 
an SQw system for the analysis of experiments performed on an MQW system with a barrier 
width of 15 nm is justified. In other methods, which are based on delocalized states for the 
MQW system, thefill miniband has to be taken into account if, for increasing barrier width, 
the miniband width becomes of the order of the binding energy. 

Finally, we emphasize that this novel method of calculating the transition energies of 
impurities in QW systems gives not only accurate results but also important information on 
the underlying physics associated with the effects of confinement. It shows clearly when an 
hlQW system can be satisfactorily modelled in terms of a sum of SQWs. This method also 
gives solutions that include both the hydrogen-like functions and metastable states [12, 131 
simultaneously, unlike the variational methods, which generally cover the hydrogen-like 
solutions only 181. The calculations could form a basis for further calculations modelling 
real physical systems in which electric fields are applied [ 1,2] and the tilting of the magnetic 
field [I71 and for refinements in which the resonant and non-resonant polaron corrections 
can be incorporated. 
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